

CA FOUNDATION MATHEMATICS

Question 1

The inverse
$$h^{-1}$$
 when $h(x) = \log_{10} x$ is:
(a) $\log_{10} x$ (b) 10^x (c) $\log_{10}(1/x)$ (d) None

Question 2

Let *R* be the set of real numbers such that the function $f: R \to R$ and $g: R \to R$ are defined by $f(x) = x^2 + 3x + 1$ and g(x) = 2x - 3. Find (fog).

(a) $4x^2 + 6x + 1$ (b) $x^2 + 6x + 1$ (c) $4x^2 - 6x + 1$ (d) $x^2 - 6x + 1$

Question 3

For the function $h(x) = 10^{1+x}$, the domain of real values of x where $0 \le x \le 9$, the range is:

(a) $10 \le h(x) \le 10^{10}$ (b) $0 \le h(x) \le 10^{10}$ (c) 0 < h(x) < 10 (d) None

Question 4

If
$$f(x) = \left(\frac{x^2 - 4}{x - 2}\right)$$
, then $f(2)$ is:
(a) 0 (b) 2 (c) 4 (d) 1

Question 5

Let $A = \{1, 2, 3\}$, then $R_3 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1), (2, 3), (3, 2)\}$ (a) Only Symmetric (b) Reflexive & Symmetric (c) Perferring & Transitive

(c) Reflexive & Transitive

(d) Symmetric & Transitive

Question 6

Out of a group of 20 teachers in a school, 10 teach Mathematics, 9 teach Physics and 7 teach Chemistry. 4 teach Mathematics and Physics but none teach both Mathematics and Chemistry. How many teach Chemistry and Physics? How many teach only Physics?

(a) 3; 2 (b) 2; 3 (c) 4; 5 (d) None

Question 7

Let Z be the universal set for two sets – A and B. If n(A) = 300, n(B) = 400 and $n(A \cap B) = 200$, then $n(A' \cap B')$ is equal to 400 provided n(Z) is equal to:

(a) 900 (b) 800 (c) 700 (d) 600

Question 8

At a certain conference of 100 people there are 29 Indian women and 23 Indian men. Out of these Indian people 4 are doctors and 24 are either men or doctors. There are no foreign doctors. The number of women doctors attending the conference is:

(a) 2 (b) 4 (c) 1 (d) None

Question 9

If *R* is the set of isosceles right-angled triangles and *I* is set of isosceles triangles, then:

(a)
$$R = I$$
 (b) $R \supset I$ (c) $R \subset I$ (d) None

3